Maximum sustainable yields from a spatially-explicit harvest model.

نویسندگان

  • Nao Takashina
  • Akihiko Mougi
چکیده

Spatial heterogeneity plays an important role in complex ecosystem dynamics, and therefore is also an important consideration in sustainable resource management. However, little is known about how spatial effects can influence management targets derived from a non-spatial harvest model. Here, we extended the Schaefer model, a conventional non-spatial harvest model that is widely used in resource management, to a spatially-explicit harvest model by integrating environmental heterogeneities, as well as species exchange between patches. By comparing the maximum sustainable yields (MSY), one of the central management targets in resource management, obtained from the spatially extended model with that of the conventional model, we examined the effect of spatial heterogeneity. When spatial heterogeneity exists, we found that the Schaefer model tends to overestimate the MSY, implying potential for causing overharvesting. In addition, by assuming a well-mixed population in the heterogeneous environment, we showed analytically that the Schaefer model always overestimate the MSY, regardless of the number of patches existing. The degree of overestimation becomes significant when spatial heterogeneity is marked. Collectively, these results highlight the importance of integrating the spatial structure to conduct sustainable resource management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal impulsive harvesting policy for single population

In this paper, we established the exploitation of impulsive harvesting single autonomous population model by Logistic equation. By some special methods, we analysis the impulsive harvesting population equation and obtain existence, the explicit expression and global attractiveness of impulsive periodic solutions for constant yield harvest and proportional harvest. Then, we choose the maximum su...

متن کامل

An explicit solution for calculating optimum spawning stock size from Ricker’s stock recruitment model

Stock-recruitment models have been used for decades in fisheries management as a means of formalizing the expected number of offspring that recruit to a fishery based on the number of parents. In particular, Ricker's stock recruitment model is widely used due to its flexibility and ease with which the parameters can be estimated. After model fitting, the spawning stock size that produces the ma...

متن کامل

Human–ecosystem interactions: a dynamic integrated model

We develop an interactive simulation model that links ecological and economic systems, and explore the dynamics of harvest patterns as they simultaneously affect natural and human capital. Our models represent both single and multiple systems. The level of natural capital is influenced by interactions of (1) natural capital growth and (non-human influenced) depletion, (2) ecological fluctuation...

متن کامل

Optimal impulsive control in periodic ecosystem

In this paper, the impulsive exploitation of single species modelled by periodic Logistic equation is considered. First, it is shown that the generally periodic Kolmogorov system with impulsive harvest has a unique positive solution which is globally asymptotically stable for the positive solution. Further, choosing the maximum annual biomass yield as the management objective, we investigate th...

متن کامل

Ecosystem Viable Yields

The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the ecosystem approach by 2010. However, at the same Summit, the signatory States undertook to restore and exploit their stocks at maximum sustainable yield (MSY), a concept and practice without ecosystemic dimension, since MSY is computed species by species, on the basis of a monospecific model. Ackn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 383  شماره 

صفحات  -

تاریخ انتشار 2015